
TWMS J. Pure Appl. Math. V.10, N.2, 2019, pp.154-174

ON REMARKABLE RELATIONS AND THE PASSAGE TO

THE LIMIT IN THE THEORY OF INFINITE SYSTEMS II∗

F.M. FEDOROV1, S.V. POTAPOVA2

Abstract. We have found solutions of homogeneous finite Gaussian system of linear algebraic

equations with a degenerate matrix. These solutions are given by functional relations that allow

us to pass to the limit from finite truncated systems to an infinite system of linear algebraic

equations. We give a concept of a fundamental solution of a homogeneous infinite system.

This fundamental solution is given by Fedorov’s formula. Fedorov’s formula expresses the solu-

tion using Fedorov’s determinant, which is similar to Cramer’s determinant for inhomogeneous

systems.
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1. Introduction

This article is a continuation to the earlier article [3]. It focuses on the main and the most

difficult issue, namely, the problem of the passage to the limit from a finite systems solution to an

infinite systems solution. In [3] we mainly investigated an inhomogeneous system, in this article

we investigate a homogeneous system. The existence of nontrivial solutions of homogeneous

systems plays a special role for infinite systems because the uniqueness of its solution depends

on its existence. Nontrivial solutions of the infinite system may exist even when an infinite

determinant of this system does not equal to zero. This fact is a basic difference between

infinite and finite systems. To see how far we advanced the theory of infinite systems, one may

read the article [4]. Basic information, concepts and definitions of infinite systems, matrices and

determinants can be studied in the articles [1, 5, 6, 8, 9]. The new concepts will be presented in

this article as needed.

Apparently, I.P.Natanson [10] first built a sample of a nontrivial solution for homogeneous

infinite systems with a nonzero determinant when he replied to a question from professor

R.O.Kuzmin. For example, V.S.Rogozhin [11] built a sample of a finite-dimensional space

of nontrivial solutions for a homogeneous system with difference indices (index of coefficients of

equations is the difference between i and j). We have discovered and described in detail a new

class of infinite systems, called periodic infinite systems [5]. It allows us to build an infinite space

of nontrivial solutions for a homogeneous periodic infinite system [5, 6]. There is an example of
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such space. Let us consider following infinite system (examples of this kind can be found in the

articles [5, 6]):

∞∑
p=0

(2j + 2p)!

(2p)!
xj+p = bj , j = 0,∞, b = const > 0. (1)

The infinite system (1) is a so-called Gaussian system, i.e. all elements below the main

diagonal in the coefficient matrix of system (1) are equal to zero meanwhile all elements of the

main diagonal are not equal to zero (aj,j = (2j)!). It is clear that each series of the elements at

the corresponding row of the coefficient matrix diverges and the constant terms bj are generally

unlimited if b > 1.

Therefore, it is impossible to solve the system (1) in some normed space.

In fact, there is no method so far that could solve this system: neither approximately nor

exactly. Moreover, these systems a priory are excluded from study. However, there is a huge

number of these systems having practical applications. For example, the system (1) emerged

as a result of solving a non-stationary thermal problem with time-variable boundary conditions

[5, 6]. Nevertheless, this system has a solution, moreover, we found a particular solution of

the inhomogeneous system (1) and a fundamental solution of the corresponding homogeneous

system (1) [5, 6] (hence practically we found its general solution):

x
(k)
i =

bi

(2i)!ch(
√
b)

+
(−1)iπ2i(2k + 1)2ix

(k)
0

(2i)!22i
, i, k = 0, 1, 2, ..., ∀x(k)0 . (2)

The first part of the solution (2) is a so-called strictly particular solution and it is an

exact solution. The second part is a nontrivial solution (when x
(k)
0 ̸= 0) of the corresponding

homogeneous system (1) and it is also an exact solution. We obtained the first part of the

solution (2) with the reduction method in the narrow sense (simple reduction), i.e. a number

of unknowns is equal to a number of equations in the truncated system. The second part of

the solution (2) is obtained with the reduction method in the broad sense, i.e. the number of

unknowns is greater than the number of equations (i.e. each truncated system of n-th order has

a degenerate matrix, although the matrix of the infinite system (1) is nondegenerate). It is clear

that a subspace of solutions for the corresponding homogeneous system is infinite because the

nontrivial solution of a homogeneous system does not depend on k [6], i.e. it is a fundamental.

We may get an analytically exact solution only if we calculated an exact solution of the truncated

system of n-th order for each n. This is possible only when the system (1) is a Gaussian system.

It should be noted that one can obtain the strictly particular solution only using the reduction

method in the narrow sense (simple reduction). The nontrivial solution of homogeneous system

could be got only using the reduction method in the broad sense. This is a fundamental difference

between two senses of the reduction method.

In this paper we will focus on some remarkable relations for Sn−j(j) that arise in dealing with

finite truncated homogeneous Gaussian systems. These relations as well as for Bn−j(j) [3] allow

us to make transition from the solution of the truncated homogeneous system to the solution of

the corresponding infinite system. Some fragments of this article were described in our earlier

works, for example, in [2, 3, 4]. But these results were shown in order to solve specific problems

of these papers. In the present paper these results are collected for one purpose: to answer a

question, how to pass to the limit from the solution of the truncated homogeneous Gaussian

system to the solution of the corresponding infinite system? We will repeat and clarify proofs

for some theorems to maintain the integrity of this work and present new results.
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So, the infinite determinant |A| is nonzero. Therefore, the Gaussian elimination is possible

[7], and instead of a general infinite system, we solve an infinite Gaussian system (aj,j ̸= 0 for

any j):

∞∑
p=0

aj,j+pxj+p = bj , j = 1, 2, 3, ... , (3)

with the following matrices: the coefficient matrix A (Gaussian matrix) and the augmented

matrix respectively

A =



a1,1 a1,2 . a1,n .

0 a2,2 . a2,n .

. . . . .

. . . . .

. . . . .

0 0 . an,n .

. . . . .


, A =



b1 a1,1 . a1,n .

b2 0 . a2,n .

. . . . .

. . . . .

. . . . .

bn 0 . an,n .

. . . . .


. (4)

2. The solution of finite truncated systems

Thus, only after changing the general infinite system on the infinite Gaussian system (3) we

can apply the reduction method, namely in two of its senses. First, we solve the system (3) with

the method of reduction in the narrow sense, i.e. by simple reduction.

Theorem 2.1. Let the system (3) be truncated with the reduction method in the narrow sense

into the finite Gaussian system of the form

n−j∑
p=0

aj,j+p
n
xj+p= bj , aj,j ̸= 0, j = 1, n. (5)

Then a solution of the finite system (5) is the expression:
n
xj= Bn−j , j = 1, 2, ..., n, (6)

where

Bn−j =
bj
aj,j

−
n−j−1∑
p=0

aj,n−p

aj,j
Bp, B0 =

bn
an,n

, j = 1, n− 1. (7)

Let us consider the homogeneous infinite Gaussian system (bj ≡ 0 for all j) (3). If we try

to solve this system (3) by the reduction in the narrow sense, i.e. using the (2.1), it is difficult

to expect to obtain a nontrivial solution. It follows from the (2.1) that for each n we obtain a

trivial solution, and it is likely that if n goes to infinity we will get only a trivial solution of the

homogeneous infinite Gaussian system (3), which was verified in [3]. Therefore we will solve the

homogeneous infinite Gaussian system (3) with the method of reduction in the broad sense. It

means that the finite truncated system for any n has at least one unknown with an arbitrary

value. It is convenient to assume this unknown to be, for example, x1.

Theorem 2.2. Let the system (3) be truncated with the reduction method in the broad sense

into a finite Gaussian system of the form:

n−j∑
p=0

aj,j+p
n
xj+p= 0, ajj ̸= 0, j = 1, n− 1. (8)
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Then the following expression is a solution of(8:

n
xj=

(−1)j−1x1∏j−1
k=1 Sn−j+k

, j = 2, n, (9)

where

Sn−j =
aj,j+1

aj,j
+

n−j∑
p=2

(−1)p+1aj,j+p

aj,j
∏p−1

k=1 Sn−j−k

, S1 =
an−1,n

an−1,n−1
, j = 1, n− 1, (10)

and x1 is an arbitrary real number.

Corollary 2.1. Neighboring unknowns of the homogeneous finite Gaussian system (8) coupled

by the following relation:
n
xj= −Sn−j

n
xj+1, j = 1, n− 1, (11)

where Sn−j are recursively defined by the formula (10).

Theorem 2.3. Let the inhomogeneous infinite Gaussian system (3) be truncated with the re-

duction method in the broad sense into the following inhomogeneous finite Gaussian system:

n−j∑
p=0

aj,j+p
n
xj+p= bj , ajj ̸= 0, j = 1, n− 1. (12)

Then a solution of (12) is the expression:

n
xj= Bn−j +

(−1)j−1Bn−1∏j−1
k=1 Sn−j+k

+
(−1)j−1x1∏j−1
k=1 Sn−j+k

, j = 2, n, (13)

where

Bn−j =
bj
aj,j

−
n−j−1∑
p=1

aj,n−p

aj,j
Bp B1 =

bn−1

an−1,n−1
, j = 1, n− 1, (14)

Sn−j =
aj,j+1

aj,j
+

n−j∑
p=2

(−1)p+1aj,j+p

aj,j
∏p−1

k=1 Sn−j−k

, S1 =
an−1,n

an−1,n−1
, j = 1, n− 1, (15)

x1 is an arbitrary real number, and for unification of notations we consider that B0 = 0.

Corollary 2.2. Neighboring unknowns of the homogeneous finite Gaussian system(12) coupled

by the following relation:
n
xj= Bn−j + Sn−jBn−j−1 − Sn−j

n
xj+1, j = 1, n− 1, (16)

where Bn−j and Sn−j are recursively defined by formulas (14) and (15), and B0 = 0 as above.

It is obvious that for the homogeneous finite system, the relation (11) follows from (16).

Remark 2.1. Clearly, that the expressions (10) and (15) are the same, hence the numbers

Sn−j does not depend on the fact that the system is homogeneous or inhomogeneous.

Remark 2.2. From the (2.3) it follows that there is a sum of particular solutions of homoge-

neous and inhomogeneous systems in the solution (13) which was obtained with the reduction

method in the broad sense.

Remark 2.3. Truly, if we truncate an infinite system with the reduction method in the broad

sense, then we will get a finite system where the last row of its matrix is entirely consists of zeros.

Hence, when we use the reduction method in the broad sense, we approximate the original infinite

system with the finite system with degenerate matrix even if it has a nondegenerate matrix. It
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will be shown below, that this approach is the most effective when solving homogeneous infinite

systems.

In [3] we have got remarkable relations for Bn−j of the form:

Theorem 2.4. For numbers Bn−j we have the following relations:

I. Bn−j =
bj
aj,j

−
n−j−1∑
p=1

aj,n−p

aj,j
Bp B1 =

bn−1

an−1,n−1
;

II. Bn−j =
|A(j)

n−1|
|An−1|

,

where |An−1| is a determinant for a finite system of type (5) of order n − 1, |A(j)
n−1| – is a

Cramer’s determinant for the same system (it obtained by replacing the j column of |An−1| with
the right-hand side from the system of type (5);

III. Bn−j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bj
aj,j

bj+1

aj+1,j+1

bj+2

aj+2,j+2
... bn−1

an−1,n−1

aj,j+1

aj,j
1 0 ... 0

aj,j+2

aj,j

aj+1,j+2

aj+1,j+1
1 ... 0

. . . ... .

aj,j+j

aj,j

aj+1,j+j

aj+1,j+1

aj+2,j+j

aj+2,j+2
... 0

. . . ...

aj,n−2

aj,j

aj+1,n−2

aj+1,j+1

aj+2,n−2

aj+2,j+2
... 0

aj,n−1

aj,j

aj+1,n−1

aj+1,j+1

aj+2,n−1

aj+2,j+2
... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Bn−j(j); (17)

IV. Bn−j =

n−j−1∑
p=0

(−1)pAp(j)
bj+p

aj+p,j+p
, where

Ap(j) =

p−1∑
k=0

(−1)p−1−kaj+k,j+p

aj+k,j+k
Ak(j), A0(j) = 1 ∀j, (18)

and j = 1, n− 1 for all relations.

The determinant Bn−j(j) can be called generalized Cramer’s determinant, that is justified by

the relations II and III. In addition, without loss of generality, we can assume that the coefficients

aj,j = 1 in (17), in the relation IV and in (18). Otherwise, the ratios
aj,j+p

aj+p,j+p
,

bj
aj,j

should be

taken for aj,j and bj respectively.

It is shown in [3] that if the strictly particular solution xj of the inhomogeneous infinite system

(3) exists, then it is of the form

xj = B(j) = lim
n→∞

Bn−j =

∞∑
p=0

(−1)pAp(j)
bj+p

aj+p,j+p
, (18′)

where Ap(j) is calculated by the recurrence formula (18).

Actually in (18) the numbers Ap(j) are values of the variable determinant of p order, where

j is an integer argument.
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In case Ap(j) = Ap = const, we called these determinants the characteristic determinants of

an infinite Gaussian system with difference indices [5, 6]. Hence, in the general case, we called

them with the same term, see [3].

We assume that we can increase order of the determinant (17) without limit in accordance

with the infinite system (3). Then, when the first row is deleted from the determinant (17) and

then appropriate last row is added, we will get the determinant |A(j)| of n− j order, i.e.

|An−j(j)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,j+1

aj,j
1 0 ... 0 0

aj,j+2

aj,j

aj+1,j+2

aj+1,j+1
1 ... 0 0

aj,j+3

aj,j

aj+1,j+3

aj+1,j+1

aj+2,j+3

aj+2,j+2
... 0 0

. . . ... . .

aj,n−2

aj,j

aj+1,n−2

aj+1,j+1

aj+2,n−2

aj+2,j+2
... 1 0

aj,n−1

aj,j

aj+1,n−1

aj+1,j+1

aj+2,n−1

aj+2,j+2
...

an−2,n−1

an−2,n−2
1

aj,n
aj,j

aj+1,n

aj+1,j+1

aj+2,n

aj+2,j+2
...

an−2,n

an−2,n−2

an−1,n

an−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (19)

Below the symbol of the determinant |A(j)| is omitted.

We construct a sequence of determinants Ap(j) 0 ≤ p ≤ n − j, assuming that A0(j) = 1 for

all j, and for other p values we take the leading principal minors of the determinant (19), i.e.

A0(j) = 1, A1(j) =
aj,j+1

aj,j
, A2(j) =

∣∣∣∣∣
aj,j+1

aj,j
1

aj,j+2

aj,j

aj+1,j+2

aj+1,j+1

∣∣∣∣∣,

Ap(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,j+1

aj,j
1 ... 0 0

aj,j+2

aj,j

aj+1,j+2

aj+1,j+1
... 0 0

. . . . .

aj,j+p−2

aj,j

aj+1,j+p−2

aj+1,j+1
... 1 0

aj,j+p−1

aj,j

aj+1,j+p−1

aj+1,j+1
...

aj+p−2,j+p−1

aj+p−2,j+p−2
1

aj,j+p

aj,j

aj+1,j+p

aj+1,j+1
...

aj+p−2,j+p

aj+p−2,j+p−2

aj+p−1,j+p

aj+p−1,j+p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (20)

Here we want to emphasize that the determinants Ap(j) are also the principal determinants

(the leading principal minors) of (19) if it is infinite, and besides j may start from zero.

The recurrence relations (18) can be easily proved by induction using the sequence (20).

Theorem 2.5. Let A be a n-th order Gaussian matrix

A =


1 a0,1 a0,2 ... a0,n−1

0 1 a1,2 ... a1,n−1

0 0 1 ... a2,n−1

. . . ... .

0 0 0 ...

 .
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Then the inverse matrix A−1 is of the form:

A−1 =


1 −A1(0) A2(0) ... (−1)n−1An−1(0)

0 1 −A1(1) ... (−1)n−2An−2(1)

0 0 1 ... (−1)n−3An−3(2)

. . . ... .

0 0 0 ... 1

 (21)

where the Ap(j) are the characteristic determinants (20) and A0(j) = 1 for all j, 0 ≤ j ≤ n− 1.

Proof. Let A′ be a matrix in (21). We will prove that A′ = A−1. To do this, we will show that

a product of matrices A′, A is equal to the identity matrix, i.e. A′A = A(aj,i) = E, where E is

the identity matrix.

It is obvious that aj,j = 1, i.e. the diagonal elements of A(aj,i) are equal to one and aj,i = 0

for j > i. It means that all elements below the main diagonal are equal to zero.

Let’s calculate the rest of elements aj,j+p, where p = 1, 2, ..., n − 1 − j. To do this we take

the j-th row of matrix A′: (0, 0, ..., 0︸ ︷︷ ︸
j

, 1,−A1(j), A2(j), ..., (−1)p−1Ap−1(j), (−1)pAp(j)) and the

j-th column of matrix A: (a0,j+p, a1,j+p, ..., aj,j+p, aj+1,j+p, ..., aj+p−2,j+p, aj+p−1,j+p, 1)
T , j =

0, 1, ..., n−p−1. The scalar product of them gives the element aj,j+p = aj,j+p−aj+1,j+pA1(j)+

aj+2,j+pA2(j) + ... + (−1)p−1aj+p−1,j+p Ap−1(j) + (−1)pAp(j). Using the recurrence relations

(18), we get aj,j+p = 0. Hence we can obtain A′ = A−1. �

Corollary 2.3. The characteristic determinant Ap(j) is equal to the complementary minor

Mp+j,j of the element aj+p,j in the matrix A, i.e.

Ap(j) = Mp+j,j, j = 0, 1, ..., n− p− 1.

Proof. From the definition of the inverse matrix for a Gaussian matrix having unit elements on

main diagonal we have

A−1 =


1 −M1,0 M2,0 ... (−1)p+jMp+j,0

0 1 −M2,1 ... (−1)p+j−1Mp+j−1,1

0 0 1 ... (−1)p+j−2Mp+j−2,2

. . . ... .

0 0 0 ... 1

 ,

where Mp+j,j is the minor of the element ap+j,j in the matrix A, p = 1, 2, ..., n− 1− j.

Using the (21), we have proved the corollary. �

To generalize the (2.5) for infinite Gaussian matrix, it is necessary to use the (2.3). The (2.3)

and the relations (18) imply that for the fixed j and p an infinite complementary minors are

finite and exist.

So, using the induction we generalize the (2.5) to the infinite case:

Theorem 2.6. Let A be an infinite Gaussian matrix

A =



1 a0,1 a0,2 ... a0,n−1 .

0 1 a1,2 ... a1,n−1 .

0 0 1 ... a2,n−1 .

. . . ... . .

0 0 0 ... 1 .

. . . ... . .


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Then the inverse matrix A−1 is of the form

A−1 =



1 −A1(0) A2(0) . (−1)iAi(0) . (−1)n−1An−1(0) .

0 1 −A1(1) . (−1)i−1Ai−1(1) . (−1)n−2An−2(1) .

0 0 1 . (−1)i−2Ai−2(2) . (−1)n−3An−3(2) .

. . . . . . . .

0 0 0 . 1 . (−1)n−j−1An−j−1(j) .

. . . . . . . .

0 0 0 . 0 . 1 .

. . . . . . . .


(21′)

where the Ap(j) are the characteristic determinants (20) and A0(j) = 1 for all fixed j.

3. The solution of finite truncated systems

Let’s find a relation for Sn−j similar to the relation III of (2.4). Firstly, we will prove two

lemmas, they will connect the Sn−j with characteristic determinants (19) or (20). Let’s note

that the Sn−j are a functions of integer argument as well as numbers Bn−j(j).

Lemma 3.1. Let’s denote the ratio of characteristic determinants
An−j(j)

An−j−1(j+1) by Cn−j(j).

Then, the next relation holds:

An−j(j)

An−j−k(j + k)
=

k−1∏
t=0

Cn−j−t(j + t), 1 ≤ k ≤ n− j, (22)

where An−j(j) are the characteristic determinants (19) or (20), and we adopt that A−k(j+k) =

1.

Proof. We have

An−j(j)

An−j−k(j + k)
=

An−j(j)

An−j−1(j + 1)

An−j−1(j + 1)

An−j−2(j + 2)
...
An−j−k+1(j + k − 1)

An−j−k(j + k)
=

= Cn−j(j)Cn−j−1(j + 1)...Cn−j−k+1(j + k − 1) =
k−1∏
t=0

Cn−j−t(j + t).

The lemma is proved. �

Lemma 3.2. With the notation of the (Lemma 3.1.), we have

An−j(j) =

n−j∏
k=0

Cn−j−k(j + k), 0 ≤ j ≤ n− 1. (23)

Proof. From (22) it follows that:

An−j(j) = An−j−k(j + k)
k−1∏
t=0

Cn−j−t(j + t).

Suppose that n− j − t = 0 and taking into account A0(n) = 1, we have proved (23). �

Theorem 3.1. For numbers Sn−j, we have

Sn−j =
An−j(j)

An−j−1(j + 1)
= Sn−j(j), 0 ≤ j ≤ n− 1, (24)

where An−j(j) are the characteristic determinants (19).
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Proof. We expand the determinant (20) along the first row. We have

Ap(j) =
aj,j+1

aj,j
Ap−1(j + 1)− 1 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,j+2

aj,j
1 ... 0 0

aj,j+3

aj,j

aj+2,j+3

aj+2,j+2
... 1 0

. . ... . .

aj,j+p−1

aj,j

aj+2,j+p−1

aj+2,j+2
...

aj+p−2,j+p−1

aj+p−2,j+p−2
1

aj,j+p

aj,j

aj+2,j+p

aj+2,j+2
...

aj+p−2,j+p

aj+p−2,j+p−2

aj+p−1,j+p

aj+p−1,j+p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Next, we expand the last determinant along its first row, and then we continue to do so several

times. We have

Ap(j) =
aj,j+1

aj,j
Ap−1(j + 1)− aj,j+2

aj,j
Ap−2(j + 2) + ...(−1)p−1 ·

∣∣∣∣∣∣
aj,j+p−1

aj,j
1

aj,j+p

aj,j

aj+p−1,j+p

aj+p−1,j+p−1

∣∣∣∣∣∣ .
On the other hand, the characteristic determinants A1(j) and A0(j) respectively equal to

A1(j + p− 1) =
aj+p−1,j+p

aj+p−1,j+p−1
and A0(j + p) = 1 by definition. Therefore, we have:

Ap(j) =
aj,j+1

aj,j
Ap−1(j + 1)− aj,j+2

aj,j
Ap−2(j + 2) + ...

...+ (−1)p−2aj,j+p−1

aj,j
A1(j + p− 1) + (−1)p−1aj,j+p

aj,j
A0(j + p).

Dividing the last expression by Ap−1(j + 1), we will get

Ap(j)

Ap−1(j + 1)
=

aj,j+1

aj,j
− aj,j+2

aj,j

Ap−2(j + 2)

Ap−1(j + 1)
+ ...

...+ (−1)p−2aj,j+p−1

aj,j

A1(j + p− 1)

Ap−1(j + 1)
+ (−1)p−1aj,j+p

aj,j

A0(j + p)

Ap−1(j + 1)
.

(25)

Let n− j = 1 (j = n− 1), then the next equalities hold true:

A1(n− 1)

A0(n)
= A1(n− 1) =

an−1,n

an−1,n−1
= S1(n− 1),

i.e. for the initial value n− j = 1 the relation (24) holds.

Let’s prove the theorem by induction. Assume (24) holds for n − j ≤ p − 1, then we show

that (24) holds for n− j = p. Let p = n− j, then we can rewrite (25) as

An−j(j)

An−j−1(j + 1)
=

aj,j+1

aj,j
+

n−j∑
p=2

(−1)p−1aj,j+p

aj,j

1
An−j−1(j+1)
An−j−p(j+p)

. (26)

It is clear that the statement of theorem holds for the ratio
An−j−1(j + 1)

An−j−p(j + p)
by induction

hypothesis, i.e. Cn−j−k(j + k) = Sn−j−k(j + k), k > 0. Let’s apply (1) to (25) and take into

account the (16), then we have

An−j(j)

An−j−1(j + 1)
=

aj,j+1

aj,j
+

n−j∑
p=2

(−1)p−1 aj,j+p

aj,j
∏p−1

k=1 Sn−j−k

= Sn−j(j).

Theorem is proved. �

We use (3) and get the next corollary:
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Corollary 3.1. For determinants An−j(j) the next relation holds true

An−j(j) =

n−j∏
k=0

Sn−j−k(j + k). (27)

Let’s express a solution of the homogeneous system (12) (bj = 0, j = 0, n− 1) in terms of

determinants, like a Cramer’s rule.

Theorem 3.2. A solution of the homogeneous finite system (12) is given by

xj =
(−1)jx0An−j(j)

An(0)
, j = 0, 1, ..., n, (28)

where An−j(j) are the characteristic determinants (19) and x0 is an arbitrary real number.

Proof. From (24), we have

An−j(j) = Sn−j(j)An−j−1(j + 1).

Solving this recurrence equation in the same way as the equation (11), we have

An−j(j) =
An(0)∏j−1

k=0 Sn−k(k)
. (29)

We find
j−1∏
k=0

Sn−k(k) from (29) and then substitute it to (9) (j = 0, 1, ..., n), we will get what is

required to prove. �

In summary, we formulate a theorem for numbers Sn−j(j) in the same way as the (2.4).

Theorem 3.3. For numbers Sn−j(j) we have the following relations:

I. Sn−j =
aj,j+1

aj,j
+

n−j∑
p=2

(−1)p+1aj,j+p

aj,j
p−1∏
k=1

Sn−j−k

, S1 =
an−1,n

an−1,n−1
, j = 0, n− 2;

II. Sn−j(j) =
An−j(j)

An−j−1(j + 1)
, j = 0, n− 1,

where An−j(j) are the characteristic determinants (19) of order n− j and

An−j(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,j+1

aj,j
1 0 ... 0 0

aj,j+2

aj,j

aj+1,j+2

aj+1,j+1
1 ... 0 0

aj,j+3

aj,j

aj+1,j+3

aj+1,j+1

aj+2,j+3

aj+2,j+2
... 0 0

. . . ... . .

aj,n−2

aj,j

aj+1,n−2

aj+1,j+1

aj+2,n−2

aj+2,j+2
... 1 0

aj,n−1

aj,j

aj+1,n−1

aj+1,j+1

aj+2,n−1

aj+2,j+2
...

an−2,n−1

an−2,n−2
1

aj,n
aj,j

aj+1,n

aj+1,j+1

aj+2,n

aj+2,j+2
...

an−2,n

an−2,n−2

an−1,n

an−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, j = 0, n− 1; (30)

III.

n−j∏
k=0

Sn−j−k(j + k) = An−j(j), j = 0, n− 1;
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IV. Ap(j) =

p−1∑
k=0

(−1)p−1−kaj+k,j+p

aj+k,j+k
Ak(j), A0(j) = 1 for all ∀j, j = 0, n− 1;

V.
n+1
xj =

(−1)jx0An−j(j)

An(0)
, j = 0, n.

Here we only note that we obtain the relation V when the homogeneous system of n equations

with n+1 unknowns x0, x1,...,xn is considered and x0 is an arbitrary real number. Moreover, the

relation V looks like a Cramer’s rule (in case of homogeneous system). This fact will be discussed

in more detail below. Hence, (3.3) shows an implementation of the method of reduction in the

broad sense to solve a homogeneous system.

4. The transition from the homogeneous finite system solutions to the

solution of the homogeneous infinite system

If a nontrivial solutions of homogeneous infinite system exists, then we solve this system in

the same way as the inhomogeneous system in [3]. Here it is necessary to use the method of

reduction in the broad sense, i.e. the truncated system for any order is considered as a system

with degenerate matrix. What is the reason for that, if we assumed that infinite determinant is

nonzero? This is due to the next two facts. Firstly, let nontrivial solution {xj}∞0 exists, then it

is obvious that the set {cxj}∞0 is also a solution of homogeneous system for any constant c ̸= 0.

It means that an existence of one solution implies an existence of infinitely many solutions.

Secondly, if we use the method of reduction in the narrow sense to solve the finite truncated

system of nth order, then each finite system has only a trivial solution. Therefore, it is hard to

expect a nontrivial solution at the limit.

Hence, we consider the Sn−j(j) instead of the Bn−j(j). We will use (3.3) to pass to the limit

from the finite system (8) (j = 0, 1, ..., n − 1) to infinite Gaussian system (3) (j = 0,∞). We

assume that the following two conditions hold as well as we assumed in [3]:

Condition 4.1. a) Suppose that the limit lim
n→∞

Sn−j(j) = S(j) ̸= 0 exists for any fixed j. This

condition guarantees that the method of reduction in the broad sense converges, as it will be

shown bellow;

Condition 4.2. b) Suppose that in the relation I it is possible to pass term-by-term to the limit

in the sense of formula

lim
n→∞

n−j∑
p=2

(−1)p+1aj,j+p

aj,j
p−1∏
k=1

Sn−j−k

=
∞∑
p=2

(−1)p+1aj,j+p

aj,j
p−1∏
k=1

lim
n→∞

Sn−j−k

, j = 0,∞. (31)

for any fixed j.

As it will be seen below, if the condition a) holds then the condition b) is a sufficient for

a nontrivial solution of the homogeneous original system (3) to be construct by numbers S(j).

Thus, the performance of only one condition a) is not sufficient for us to get a nontrivial solution

of homogeneous infinite system by the method of reduction in a broad sense.

Theorem 4.1. Let the conditions a) and b) hold, then there are infinitely many nontrivial

solutions {cxj}∞0 of homogeneous (bj = 0) Gaussian system (3), where c ̸= 0 is an arbitrary real

number.
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Proof. We pass to the limit as n → ∞ in the relation I of (3.3). Under the conditions of (4), the

next equality holds true for each j:
∞∑
p=0

(−1)paj,j+p

aj,j
p−1∏
k=0

S(j + k)

= 0, j = 0, 1, 2, ... , (32)

for the unification of notations we consider that
−1∏
k=0

S(j + k) = 1 for each j.

Here, in (32) we note that, without loss of generality, we may assume that aj,j = 1.

Now for any real c = x0 ̸= 0, we compose a numbers xj =
(−1)jx0
j−1∏
k=0

S(k)

. Then let us to show that

these numbers satisfy the homogeneous system (3). Indeed, if we put them into system (3), then

we get
∞∑
p=0

aj,j+pxj+p =
(−1)jx0
j−1∏
k=0

S(k)

∞∑
p=0

(−1)paj,j+p

p−1∏
k=0

S(j + k)

= 0,

here we used that
j+p−1∏
k=0

S(k) =
j−1∏
k=0

S(k)
p−1∏
k=j

S(j + k), x0 ̸= 0, S(j) ̸= 0 and equality (32).

Theorem is proved. �

Corollary 4.1. Let the conditions a) and b) hold. Then the neighboring components of nontrivial

solution {xj}∞0 of homogeneous system (3) coupled by the following relation:

xj = −S(j)xj+1, j = 0,∞, (33)

where S(j) = lim
n→∞

Sn−j(j).

Remark 4.1. If the conditions a) and b) hold, then the method of reduction in the broad sense

converges to nontrivial solution {xj}∞0 . It means that the passage to the limit from solution (9)

of the finite system (8 to solution of the homogeneous infinite system (3) holds true:

lim
n→∞

n
xj= xj = lim

n→∞
(−Sn−j(j)

n
xj+1) = −S(j)xj+1, j = 0,∞,

where Sn−j are recursively defined by the relation I of (3.3), and S(j) = lim
n→∞

Sn−j(j).

Indeed, taking into account (4), if we pass to the limit in (11) then we get the last equality.

Remark 4.2. In fact for any nontrivial solution the relation such as (33) holds true. Indeed,

if S(j) = − xj

xj+1
is a new unknown, then we get relation (33). Hence numbers S(j) characterize

a nontrivial solution. For example, if S(j) = 0 for some j or these numbers do not exist, then

homogeneous system has only a trivial solution. If S(j) = lim
n→∞

Sn−j(j) = S(j), then we get

some special nontrivial solution, as it will be shown below.

Definition 4.1. Let numbers S(j) exist for each j and satisfy relation (33. Here the set {xj}∞0
composes a nontrivial solution of the homogeneous Gaussian system (3). Then numbers S(j)

are called a characteristic numbers of a corresponding solution. If S(j) = lim
n→∞

Sn−j(j) = S(j),

then we call these numbers a principal characteristic numbers of a principal nontrivial solution

{xj}∞0 .

Hence, if the limit lim
n→∞

Sn−j(j) = S(j) ̸= 0 is a principal characteristic number, then the

method of reduction in the broad sense converges to a principal nontrivial solution {xj}∞0 of the

homogeneous system (3), and solutions {cxj}∞0 we call a principal fundamental solutions.
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It is worth noting that a characteristic numbers S(j) of a solutions {cxj}∞0 and {xj}∞0 are

the same for any constant c ̸= 0. Therefore, a principal fundamental solution is determined up

to a constant multiplier c. In general, if we know only one nontrivial solution, then there are an

infinitely many nontrivial solutions.

The importance of the next theorem lies in the fact that the passage to the limit in expression

(15) and the existence of a principal characteristic numbers of corresponding nontrivial solution

of the homogeneous system are equivalent.

Theorem 4.2. Let the condition a) holds. The passage to the limit in relation I is possible if

and only if a numbers S(j) j = 0, 1, ... are the principal characteristic numbers of a corresponding

solution.

Proof. N e c e s s i t y. Let the passage to the limit in relation I is possible, then in accordance

with (4) and (4.1), we conclude that a numbers S(j) j = 0, 1, ... are the principal characteristic

numbers of a corresponding solution.

S u f f i c i e n c y. Let the set of numbers S(j) j = 0, 1, ... be a set of the principal

characteristic numbers of a corresponding solution. It means that an equality (33) holds and a

numbers xj =
(−1)jx0∏j−1
k=0 S(k)

satisfy to homogeneous system (3). Let’s prove that an expression (31)

holds true. Taking into account the notation Sn−j = Sn−j(j) and condition a), we pass to the

limit in the relation I of (4), then we have

lim
n→∞

Sn−j = S(j) = aj,j+1 + lim
n→∞

n−j∑
p=2

(−1)p+1aj,j+p

p−1∏
k=1

Sn−j−k(j + k)

, j = 0, 1, 2, ... . (34)

From the (32), we have

S(j) = aj,j+1 +
∞∑
p=2

(−1)p+1aj,j+p

p−1∏
k=0

S(j + k)

, j = 0, 1, 2, ... , (35)

We subtract an equality (35) from an equality (34) and taking into account the S(j) =

lim
n→∞

Sn−j(j), we have:

lim
n→∞

n−j∑
p=2

(−1)p+1aj,j+p

p−1∏
k=1

Sn−j−k

=

∞∑
p=2

(−1)p+1aj,j+p

p−1∏
k=1

S(j + k)

=

∞∑
p=2

(−1)p+1aj,j+p

p−1∏
k=1

lim
n→∞

Sn−j−k

, j = 0,∞.

Theorem is proved. �

Therefore, if the conditions a) and b) hold, then the method of reduction in the broad sense

converges to a principal nontrivial solution of the homogeneous Gaussian system (3). Hence,

a principal nontrivial solution is a special solution by the its construction, and it is a unique.

Actually, this solution is the basis of the vector subspace of nontrivial solutions of the homo-

geneous system. Hence, in analogy with periodic system, we may call this solution {cxj}∞0 a

fundamental solution [5, 6]. It means that we call a principal nontrivial solution a principal

fundamental solution.

In order to obtain a better idea of the fundamental solutions of homogeneous system, we con-

sider next homogeneous periodic system, more precisely, a homogeneous system with difference

indices [5, 6]. Let the next homogeneous infinite system with difference indices (a coefficients
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depend on the one index) be given:

∞∑
p=0

apxj+p = 0, j = 0, 1, .... . (a)

As shown in [5, 6], the expression

xj =
(−1)jx0

Sj
, j = 0, 1, .... (b)

is a solution of system (a), where 1
S is an arbitrary solution of the characteristic equation

f(x) = 0, i.e.

f(x) =

∞∑
p=0

(−1)jap
Sp

= 0, (c)

where x0 is an arbitrary real number.

The solution of (b) type we call a fundamental solution of the system (a) with difference

indices. The equality xj = −Sxj+1 holds true for any fundamental solutions (b), and xj are a

components of a fundamental solution of the system (a).

If 1
Sk

is a k-th root of multiplicity νk of a characteristic equation (c), then an expressions of

the form

x
(k)
i =

(−1)ix
(k)
0

Si
k

, x
(k)
i =

(−1)iix
(k)
0

Si
k

, x
(k)
i =

(−1)ii2x
(k)
0

Si
k

, ...

... x
(k)
i =

(−1)iiνk−1x
(k)
0

Si
k

, i > 0, k = 1, 2, ..., N,

(d)

are a linearly independent solutions of system (a), where x
(k)
0 are an arbitrary real numbers and

N is the number of zeros of characteristic equation (c), counted without multiplicity.

We have shown that a solutions of (d) type form a complete system of fundamental solutions

of system (a).

Unfortunately, it is impossible to define the limits themselves, i.e. the numbers S(j), from

the relation I as well as for B(j), because defining them is equivalent to finding the solution of

the original homogeneous system (3). Therefore, we will use the next theorem to calculate a

characteristic numbers.

Theorem 4.3. A necessary and sufficient condition for nontrivial solution {xj}∞0 of the ho-

mogeneous Gaussian system (3) to exist is that the its characteristic numbers S(j) satisfy the

equality (32) for each j.

Proof. N e c e s s i t y. Let yj be an arbitrary nontrivial solution of system (3). Then, by (4.1,

the relation (33) holds true.

Solving the recursive equation (33) in reverse order, we have:

yj =
(−1)jy0
j−1∏
k=0

S(k)

, (36)

where y0 is an arbitrary real number, and
∏−1

k=0 S(k) = 1 as we considered before.

We have
j+p−1∏
k=0

S(k) =

j−1∏
k=0

S(k)

j+p−1∏
k=j

S(k) =

j−1∏
k=0

S(k)

p−1∏
k=0

S(j + k).
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Taking into account the last relations, we put (36) into the origin system (3), then we get

∞∑
p=0

aj,j+pyj+p =
∞∑
p=0

(−1)j+py0aj,j+p

j+p−1∏
k=0

S(k)

=
(−1)jy0
j−1∏
k=0

S(k)

∞∑
p=0

(−1)paj,j+p

p−1∏
k=0

S(j + k)

= 0,

where j = 0, 1, .... In general case we have y0 ̸= 0, then the necessary condition (32) for each j

follows from the last equation. Necessity is proved.

S u f f i c i e n c y. Let numbers S(j) be a solutions of equations (32) for each j. Then we

compose a numbers xj of the form (36):

xj =
(−1)jx0
j−1∏
k=0

S(k)

.

We put these values into the homogeneous system (3) and verify that all the equations are

satisfied, because the (32) holds. Theorem is proved. �

In order to find the principal characteristic numbers and the principal fundamental solution,

we will use the remarkable properties of Sn−j(j). We discuss it in the next paragraph.

5. The existence of nontrivial solutions of the homogeneous infinite systems

As we noted before, the method of reduction in both sense gives an essentially different

solutions of infinite systems. This method in the narrow sense gives a special solution for

inhomogeneous infinite system – a strictly particular solution, and the method of reduction in

the broad sense gives a special nontrivial solution for homogeneous infinite system – a principal

fundamental solution of the homogeneous system.

It is worth mentioning the critical importance of strictly particular solution properties [2, 3, 4].

These properties may be useful for a principal fundamental solution, they are as follows.

Property 5.1. We obtain a strictly particular solution with the method of reduction in the

narrow sense. Thus, the existence of a strictly particular solution proves the convergence of the

reduction method.

Property 5.2. A consistent inhomogeneous Gaussian system always has a unique particular

solution. It is the strictly particular solution, and it can be expressed by Cramer’s formula. It

follows that Cramer’s formula for infinite system is obtained from Cramer’s formula for finite

truncated Gaussian system by use of the passage to the limit.

Property 5.3. The strictly particular solution does not contain the nontrivial solution of the

corresponding homogeneous system. That is why this solution was called a strictly particular

solution

Property 5.4. The strictly particular solution is the principal solution [2] of the infinite

system, if it exists. This principal solution is obtained when we combine the reduction method

with the method of successive approximations whose convergence does not depend on reduction

method convergence.

Property 5.5. The trivial solution of the homogeneous Gaussian infinite system is also its

strictly particular solution. Hence, we can not obtain the trivial solution of the homogeneous

system with the method of reduction in the narrow sense.
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Therefore, we will try to solve the homogeneous infinite system (3) with the method of re-

duction in the broad sense. But before we investigate the homogeneous system, we should say

a few words about Properties 1–5. In [3], we proved the important theorems:

Theorem 5.1. If inhomogeneous Gaussian system (3) has a unique solution, then this solution

will certainly be its strictly particular solution, and this solution is given by Cramer’s formula;

Theorem 5.2. If inhomogeneous Gaussian system (3) is consistent, then its strictly particular

solution exists.

The Property 3 follows directly from the (5.1), because otherwise we have that the determinant

of the system is not unique. If we suggest that there is another particular solution and this

solution does not contain the nontrivial solution of corresponding homogeneous system as a

summand, then we reach a contradiction. It is an actually the proof of (5.2) and Property 2.

Thus, (5.2) a is a consequence of (5.1).

We want to say about the proof of (5.2) in [3]. It was found out that the proof is not exactly

correct, because in [3] the concept of a principal nontrivial solutions had not been defined yet.

Therefore, we gave above the simple proof of it. It may be possible to use the proof of (5.2) in

[3] with a few changes as the proof of existence of a principal fundamental solutions, it will be

shown below.

5.1. One-dimensional subspace of the nontrivial solutions of the homogeneous infi-

nite system.

Theorem 5.3. If homogeneous Gaussian system (3) has a unique fundamental solution up to

an arbitrary multiplier, then this solution is a principal fundamental solution.

Proof. Let {yi}∞1 be a nontrivial solution of the homogeneous system (3), i.e. these numbers

satisfy the homogeneous system (3):

a1,1y1 + a1,2y2 + a1,3y3 + a1,4y4 + ...+ a1,NyN + ... = 0,

a2,2y2 + a2,3y3 + a2,4y4 + ...+ a2,NyN + ... = 0,

............................................................... ,

aN−1,N−1yN−1 + aN−1,NyN + ... = 0,

aN,NyN + ... = 0,

.......................

(37)

Next, we truncate the system (37), leaving N − 1 equations with N unknowns, then we get

a1,1y1 + a1,2y2 + a1,3y3 + a1,4y4 + ...+ a1,N−1yN−1 + a1,NyN = bN1 ,

a2,2y1 + a2,3y3 + a2,4y4 + ...+ a2,N−1yN−1 + a2,NyN = bN2 ,

...................................................................................... ,

aN−2,N−2yN−2 + aN−2,N−1yN−1 + aN−2,NyN = bNN−2,

aN−1,N−1yN−1 + aN−1,NyN = bNN−1,

(38)

where bNj = −
∞∑

p=N+1

aj,pyp, the upper index emphasizes here that all the constant terms in (38)

tend to zero as N increases without limit.

We shall explain it. Firstly, because yi satisfy to the system (37), it follows that lim
N→∞

bNj = 0

independently from the fixed j.



170 TWMS J. PURE APPL. MATH. V.10, N.2, 2019

Secondly, if N increases, for example by 1, then on the left-hand side of (38) there will be a

new component yN+1 and a new equation. We will have

a1,1y1 + a1,2y2 + a1,3y3 + a1,4y4 + ...+ a1,NyN + a1,N+1yN+1 = bN+1
1 ,

a2,2y1 + a2,3y3 + a2,4y4 + ...+ a2,NyN + a2,N+1yN+1 = bN+1
2 ,

..................................................................................... ,

aN−1,N−1yN−1 + aN−1,NyN + aN−1,N+1yN+1 = bN+1
N−1,

aN,NyN + aN,N+1yN+1 = bN+1
N ,

(39)

where bN+1
j = −

∞∑
p=N+2

aj,pyp. If N is large enough then it is clear that bNj decrease with N .

We use (2.2) to rewrite (16):

yj = BN−j + Sn−jBN−j−1 − SN−jyj+1, j = 1, N − 1, (40)

where BN−j and SN−j are respectively defined by (14) and (15), but in (14) the bNj is taken for

the bj , and yj are the known solutions of homogeneous system (37).

By relation III, BN−j equal to determinant (17), but the bNj is taken for the bj therein. Based

on work [3], this is true:

lim
N→∞

BN−j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lim
N→∞

bNj
aj,j

lim
N→∞

bNj+1

aj+1,j+1

lim
N→∞

bNj+2

aj+2,j+2
...

lim
N→∞

bNN−1

aN−1,N−1
.

aj,j+1

aj,j
1 0 ... 0 .

aj,j+2

aj,j

aj+1,j+2

aj+1,j+1
1 ... 0 .

. . . ... . .

aj,j+j

aj,j

aj+1,j+j

aj+1,j+1

aj+2,j+j

aj+2,j+2
... 0 .

. . . ... . .

aj,N−2

aj,j

aj+1,N−2

aj+1,j+1

aj+2,N−2

aj+2,j+2
... 0 .

aj,N−1

aj,j

aj+1,N−1

aj+1,j+1

aj+2,N−1

aj+2,j+2
... 1 .

. . . ... . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (41)

By the construction, we have lim
N→∞

bNj = 0 and this limit does not depend on fixed j. Therefore

the infinite determinant in (41) has a zero row on the top. It means that the infinite determinant

in (41) exists and is equal to zero, i.e. lim
N→∞

BN−j = 0. We rewrite the (40) in the form

yj −BN−j = Sn−j(BN−j−1 − yj+1), j = 1, N − 1,

passing to the limit in it, we have

lim
N→∞

(yj −BN−j) = lim
N→∞

[Sn−j(BN−j−1 − yj+1)], j = 1,∞. (42)

Taking into account lim
N→∞

BN−j = 0, we have lim
N→∞

(yj − BN−j) = yj . Then based on (42), we

conclude that the numbers lim
N→∞

Sn−j = S(j) exist. It means that the equality yj = −S(j)yj+1

is true, where yj is a nontrivial solution of the homogeneous system (37). Then based on (4),

we get which was to be proved. �

We write the infinite determinant (30) to use the relation V of (3.3)
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A(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,j+1

aj,j
1 0 ... 0 0 .

aj,j+2

aj,j

aj+1,j+2

aj+1,j+1
1 ... 0 0 .

aj,j+3

aj,j

aj+1,j+3

aj+1,j+1

aj+2,j+3

aj+2,j+2
... 0 0 .

. . . ... . . .

aj,n−2

aj,j

aj+1,n−2

aj+1,j+1

aj+2,n−2

aj+2,j+2
... 1 0 .

aj,n−1

aj,j

aj+1,n−1

aj+1,j+1

aj+2,n−1

aj+2,j+2
...

an−2,n−1

an−2,n−2
1 .

aj,n
aj,j

aj+1,n

aj+1,j+1

aj+2,n

aj+2,j+2
...

an−2,n

an−2,n−2

an−1,n

an−1,n−1
.

. . . ... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (43)

The infinite determinant (43) plays a significant role in the theory of infinite systems, may be

of greater importance than the Cramer’s determinant. It hasn’t been named before, therefore

it is reasonable to name the infinite determinant (43) after its author.

This determinant, for some specific infinite systems, had been presented in [5, 6]. These works

were about a sequence of characteristic determinants which are a leading principal minors of

determinant (43).

Definition 5.1. The infinite determinant (43) obtained by elimination of the first row of

generalized Cramer’s determinant (17) when it is an infinite, we call a Fedorov’s determinant.

We will show bellow what role Fedorov’s determinant plays in the theory of the homogeneous

systems. Here, we shall note, that this determinant is also essential in the theory of nonhomoge-

neous systems. Indeed, the strictly particular solution xj of inhomogeneous systems is defined

by the leading principal minors Ap(j) (see (18′)) of Fedorov’s determinant. And besides, the

elements of the inverse matrix of inhomogeneous systems (3) are the leading principal minors of

Fedorov’s determinant (see (21′)).

It is important to note that the (5.1) of Fedorov’s determinant is a formal, i.e. the Fedorov’s

determinant may not exist. The finite determinants An−j(j) that are defined in (30) are of great

importance, because they are a leading principal minors of Fedorov’s determinant. Actually, the

existence of ratio limit
An−j(j)
An(0)

plays an important role, as the next theorem indicates.

Theorem 5.4. Let the homogeneous Gaussian system (3) has the principal fundamental solution

{xj}∞0 . Then this solution is expressed by Fedorov’s formula

xj = (−1)jx0 lim
n→∞

(
An−j(j)

An(0)

)
, j = 0, 1, ...,∞, (44)

where An−j(j) are the leading principal minors of Fedorov’s determinant and x0 is an arbitrary

real number. This solution is the unique fundamental solution which expressed by Fedorov’s

formula.

Proof. We pass to the limit in the relation V of (3.3). Under the conditions of (5.4) and (4) we

have

lim
n→∞

n+1
xj = xj = lim

n→∞

(−1)jx0An−j(j)

An(0)
, j = 0,∞.

The uniqueness of such solution follows from the uniqueness of an infinite determinants A(j)

and A(0). �
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Corollary 5.1. Let Fedorov’s determinants A(j) exist for any fixed j. Then the Fedorov’s

formula (44) is of the form

xj = lim
n→∞

(−1)jx0An−j(j)

An(0)
=

(−1)jx0A(j)

A(0)
, j = 0,∞,

where A(j) is the Fedorov’s determinant and A(0) is the initial Fedorov’s determinant.

5.2. The existence of a principal fundamental solution of the homogeneous infinite

system.

Theorem 5.5. Let the inhomogeneous Gaussian system (3) has the nonunique solution. Then,

the principal fundamental solution {xj}∞0 of its corresponding homogeneous system exists.

Proof. Let {yi}∞0 be some particular solution of the homogeneous Gaussian system (3). Under

the condition of theorem we can write this solution as a sum of the strictly particular solution

of the homogeneous system (3) and some nontrivial solution of the corresponding homogeneous

system (3). We can leave out without loss of generality only one nontrivial solution up to a

constant multiplier, because the other summands may be equated to zero. Therefore, we use

the method of reduction in the broad sense, and then let us seize the approach proposed in the

proof of the (5.3). We have the solution {yi}∞0 , it satisfies the system (3). Let’s rewrite this

system as follows

a0,0y0 + a0,1y1 + a0,2y2 + a0,3y3 + ...+ a0,NyN = b0 − bN0 = b
N
0 ,

a1,1y1 + a1,2y2 + a1,3y3 + ...+ a1,NyN = b1 − bN1 = b
N
1 ,

................................................................................. ,

aN−1,N−1yN−1 + aN−1,NyN = bN−1 − bNN−1 = b
N
N−1,

................................................................. ,

(45)

where bNj =

∞∑
p=N+1

aj,pyp.

We note that because yi satisfies the system (45), it follows that lim
N→∞

bNj = 0 independently

from the fixed j. Next, we truncate the system (45), leaving N equations with N +1 unknowns,

then we get a relations like in (40) and passing to the limit in it, we get

yj = lim
N→∞

N
y j= lim

N→∞
BN−j + lim

N→∞
SN−j(BN−j−1−

N
y j+1), j = 0,∞. (46)

By the construction, the lim
N→∞

BN−j = B(j) is the strictly particular solution. Next, we

introduce the notation xj = yj −B(j), then xj = − lim
N→∞

SN−j follows from (46). It means that

lim
N→∞

SN−j = S(j), i.e. based on (4), the S(j) are forming the characteristic numbers. And

solving the last recurrence equation, we get the principal fundamental solution

xj =
(−1)jx0
j−1∏
k=0

S(k)

.

Theorem is proved completely. �
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5.3. The numerical example. Consider the following homogeneous Gaussian infinite system:

∞∑
p=0

(2j + 2p+ 1)!

(2p+ 1)!
xj+p = 0, j = 0, 1, 2, . . . (47)

In fact, the system (47) is a periodic infinite system, that is, the coefficients of the matrix of

this system satisfy the condition

aj,j+p = apaj+p,j+p =
1

(2p+ 1)!
(2j + 2p+ 1)!. (48)

Significantly using the periodicity of system (47), following [3,4], we can analytically find an

independent solutions of (48), that is, fundamental solutions:

xj = Ck
(−1)jπ2jk2j

(2j + 1)!
, k = 1, 2, ..., j = 0, 1, 2, ...,

where Ck = const.

It follows that the principal fundamental solution (k = 1) will be

xj =
(−1)jπ2j

(2j + 1)!
, j = 0, 1, 2, . . . (49)

Put in (44) x0 = 1, and compare the exact solution (49) with the calculations by the formula

(44) for n = 30. The comparison results are given in the table

x0 x1 x2 ... x9
(44) 1.0 -1.644915 0.811696 ... -0.0

(49) 1.0 -1.644934 0.811742 ... -0.0

The results of the approximate solution almost coincided. Thus, the formula (44) gives the

principal fundamental solution, and it confirms the Theorem (5.4).

6. Conclusion

An analytical solution is obtained for a homogeneous finite algebraic system of any order n

using the reduction method in the broad sense. The passage to the limit from a finite homo-

geneous systems solution to an infinite homogeneous systems solution has been carried out. At

the same time, Fedorov’s formula for solving a homogeneous system was proposed, similar to

Cramer’s formula for solving a nonhomogeneous system.

The concept of the generalized infinite Fedorov’s determinant is introduced.
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